Transformaer‐based model for lung adenocarcinoma subtypes

Author:

Du Fawen1,Zhou Huiyu2,Niu Yi1,Han Zeyu3,Sui Xiaodan1

Affiliation:

1. School of Information Science and Engineering Shandong Normal University Jinan Shandong China

2. School of Computing and Mathematic Sciences University of Leicester Leicester UK

3. School of Mathematics and Statistics Shandong University Weihai China

Abstract

AbstractBackgroundLung cancer has the highest morbidity and mortality rate among all types of cancer. Histological subtypes serve as crucial markers for the development of lung cancer and possess significant clinical values for cancer diagnosis, prognosis, and prediction of treatment responses. However, existing studies only dichotomize normal and cancerous tissues, failing to capture the unique characteristics of tissue sections and cancer types.PurposeTherefore, we have pioneered the classification of lung adenocarcinoma (LAD) cancer tissues into five subtypes (acinar, lepidic, micropapillary, papillary, and solid) based on section data in whole‐slide image sections. In addition, a novel model called HybridNet was designed to improve the classification performance.MethodsHybridNet primarily consists of two interactive streams: a Transformer and a convolutional neural network (CNN). The Transformer stream captures rich global representations using a self‐attention mechanism, while the CNN stream extracts local semantic features to optimize image details. Specifically, during the dual‐stream parallelism, the feature maps of the Transformer stream as weights are weighted and summed with those of the CNN stream backbone; at the end of the parallelism, the respective final features are concatenated to obtain more discriminative semantic information.ResultsExperimental results on a private dataset of LAD showed that HybridNet achieved 95.12% classification accuracy, and the accuracy of five histological subtypes (acinar, lepidic, micropapillary, papillary, and solid) reached 94.5%, 97.1%, 94%, 91%, and 99% respectively; the experimental results on the public BreakHis dataset show that HybridNet achieves the best results in three evaluation metrics: accuracy, recall and F1‐score, with 92.40%, 90.63%, and 91.43%, respectively.ConclusionsThe process of classifying LAD into five subtypes assists pathologists in selecting appropriate treatments and enables them to predict tumor mutation burden (TMB) and analyze the spatial distribution of immune checkpoint proteins based on this and other clinical data. In addition, the proposed HybridNet fuses CNN and Transformer information several times and is able to improve the accuracy of subtype classification, and also shows satisfactory performance on public datasets with some generalization ability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3