Affiliation:
1. Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
2. Genomics Research Center, Academia Sinica, Taipei, Taiwan
3. Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
Abstract
Abstract
Stem cell surface markers may facilitate a better understanding of stem cell biology through molecular function studies or serve as tools to monitor the differentiation status and behavior of stem cells in culture or tissue. Thus, it is important to identify additional novel stem cell markers. We used glycoproteomics to discover surface glycoproteins on human embryonic stem cells (hESCs) that may be useful stem cell markers. We found that a surface glycoprotein, leucine-rich repeat neuronal protein 1 (LRRN1), is expressed abundantly on the surface of hESCs before differentiation into embryoid bodies (EBs). Silencing of LRRN1 with short hairpin RNA (shLRRN1) in hESCs resulted in decreased capacity of self-renewal, and skewed differentiation toward endoderm/mesoderm lineages in vitro and in vivo. Meanwhile, the protein expression levels of the pluripotency factors OCT4, NANOG, and SOX2 were reduced. Interestingly, the mRNA levels of these pluripotency factors were not affected in LRRN1 silenced cells, but protein half-lives were substantially shortened. Furthermore, we found LRRN1 silencing led to nuclear export and proteasomal degradation of all three pluripotency factors. In addition, the effects on nuclear export were mediated by AKT phosphorylation. These results suggest that LRRN1 plays an important role in maintaining the protein stability of pluripotency factors through AKT phosphorylation, thus maintaining hESC self-renewal capacity and pluripotency. Overall, we found that LRRN1 contributes to pluripotency of hESC by preventing translocation of OCT4, NANOG, and SOX2 from nucleus to cytoplasm, thereby lessening their post-translational modification and degradation.
Funder
Ministry of Science and Technology of Taiwan
CGMH
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Molecular Medicine
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献