Affiliation:
1. Civil and Environmental Engineering UC Berkeley Berkeley California USA
Abstract
AbstractWe explore the viability of modeling dynamic problems with a new formulation of an impulse‐based Level‐Set DEM (LS‐DEM). The new formulation is stable, fast, and energy conservative. However, it can be numerically stiff when the assembly has substantial mass differences between particles. We also demonstrate the feasibility of modeling deformable structures in a rigid body framework and propose several enhancements to improve the convergence of collision resolution, including a hybrid time integration scheme to separately handle at rest contacts and dynamic collisions. Finally, we extend the impulse‐based LS‐DEM to include arbitrarily shaped topographic surfaces and exploit its algorithmic advantages to demonstrate the feasibility of modeling realistic behavior of granular flows. The new formulation significantly improves the performance of dynamic simulations by allowing larger time steps, which is advantageous for observing the full development of physical phenomena such as rock avalanches, which we present as an illustrative example.