Affiliation:
1. Key Laboratory of the Ministry of Bio‐based Materials and Energy Education, Research Center of Biomass 3D Printing Materials South China Agricultural University Guangzhou China
2. Nanning Second People's Hospital, Department of Radiology The Second People's Hospital of Nanning Nanning China
3. Department of Pharmacy Engineering, College of Materials and Energy South China Agricultural University Guangzhou China
Abstract
AbstractPolylactic acid (PLA), a biodegradable polymer, has become a major raw material in the field of 3D printing. However, some defects such as high brittleness and average bioactivity limit its application. In this study, a novel 3D printing composite of animal bone powder/polyethylene glycol/polylactic acid was prepared and investigated. The structures and properties of bHA/PEG/PLA composites were compared with commercial micron‐sized hydroxyapatite (mHA) and nano hydroxyapatite (nHA) composites. The study results show that the bHA has the same chemical structure as mHA and nHA, but its average particle size is 390 nm, which is quite different from mHA and nHA. When the PEG content is 14%, the toughness of the PEG/PLA blends is good, and its elongation at break reaches 96.23%. The bending strength, tensile strength, and elongation at break of bHA/PEG/PLA composites reach 25.1 MPa, 16.3 MPa, and 11.32%, respectively, which are all higher than those of mHA/PEG/PLA and similar to those of nHA/PEG/PLA. The bHA/PEG/PLA biological scaffolds prepared by 3D printing show good biocompatibility in cytotoxicity experiments and have good application prospects in bone tissue engineering.
Funder
Medical Science and Technology Foundation of Guangdong Province
Science and Technology Innovation Plan Of Shanghai Science and Technology Commission
Subject
Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献