Machine learning‐based wind‐induced response analysis in rectangular building models with limbs

Author:

Sanyal Prasenjit1ORCID,Paul Rajdip2ORCID,Dalui Sujit Kumar3ORCID

Affiliation:

1. Civil Engineering Department Meghnad Saha Institute of Technology West Bengal Kolkata India

2. Civil Engineering Department Central University of Jharkhand Brambe Rd, Brambe Jharkhand Ranchi India

3. Civil Engineering Department Indian Institute of Engineering Science and Technology Shibpur, P.O.‐ Botanic Garden, Shalimar West Bengal Howrah India

Abstract

SummaryThis study investigates the impact of different positions of two limbs on the structural response of a rectangular building model to wind forces. The building's geometry assumes Z and + shapes based on specific limb configurations. Computational fluid dynamics (CFD) simulations are performed to quantify wind‐induced pressures, resulting in wind force coefficients. These coefficients are used to develop predictive machine learning models through Gene Expression Programming, Group Method of Data Handling‐combinatorial (GMDH‐Combi), Model Tree, and Artificial Neural Network (ANN) techniques. The ANN analysis explores various combinations of training algorithms, adaptation functions, activation functions, and performance functions to enhance model accuracy. Among these, the Levenberg–Marquardt (LM) with gradient descent with momentum (GDM) adaptation function and sigmoid activation function exhibit superior performance with high R‐squared values. These predictive models are then employed for a comprehensive comparative assessment of the maximum wind force coefficient (CF, max) concerning different limb positions and angles of attack (AOA). For CF, max vs Limb position, variations of limb position are examined for most critical cases of AOA. Similarly, the study of CF, max vs AOA involves an exhaustive investigation into the variation of AOA for the building with the worst limb position. The analysis reveals that changes in AOA have a more pronounced effect on CF, max compared to alterations in limb position. Interestingly, within the AOA range of 1.5 to 2.5, the CF, max consistently reaches a minimum across all models. However, the relationship between CF, max and the critical structural parameter ‘S' (representing limb position) remains less conclusive for the most significant AOAs.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3