Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for global financial crises

Author:

Sahamkhadam Maziar1ORCID,Stephan Andreas1ORCID

Affiliation:

1. Linnaeus University Växjö Sweden

Abstract

AbstractWe employ and examine vine copulas in modeling symmetric and asymmetric dependency structures and forecasting financial returns from 2001 to 2022, a period that includes the 2008 financial crisis, the 2011 European sovereign debt crisis, the 2020 COVID‐19 pandemic crisis, and the 2022 Russian invasion of Ukraine with the resulting energy crisis. We analyze the asset allocations performed and test different portfolio strategies, such as maximum Sharpe ratio, minimum variance, and minimum conditional value at risk. Using international financial market indices, we specify the regular, drawable, and canonical vine copulas, such as the Gaussian, Student's , Clayton, Frank, Joe, Gumbel, and mixed copulas, and analyze both in‐sample and out‐of‐sample portfolio performances. Out‐of‐sample portfolio back‐testing shows that vine copulas reduce portfolio risk better than the benchmark portfolio strategies and also better than simple multivariate copulas. Overall, we find that mixed vine copula models perform best with regard to risk reduction, both for the entire period 2001–2022 and during financial crises periods. Thus, a mixture of symmetric and asymmetric copula families works best in terms of portfolio risk reduction irrespective of the chosen optimization approach.

Publisher

Wiley

Subject

Management Science and Operations Research,Statistics, Probability and Uncertainty,Strategy and Management,Computer Science Applications,Modeling and Simulation,Economics and Econometrics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3