Placement of virtual network functions for network services

Author:

Umrao Brajesh Kumar1,Yadav Dharmendra Kumar1

Affiliation:

1. CSED Motilal Nehru National Institute of Technology Allahabad Prayagraj India

Abstract

SummaryNetwork function virtualization (NFV) is a name of technology for replacing hardware‐based network functions with software programs. Virtual network function (VNF) is a software program that replaces the hardware‐based network functionality. The replacement of the hardware‐based network functions (middleboxes) with software programs promises the on‐demand provisioning of network functions and reduces capital and operational expenses of the network. Due to this replaced network can adapt to the different network functions. Network service providers deploy various network services with different objectives, such as reducing the network's active servers and traffic latency or network operational expenses. In this article, a VNF placement problem is studied to optimize the total operating costs of the networks. To solve the VNF placement problem, we proposed an integer linear program (ILP) model, which has been implemented using CPLEX. Although an ILP‐based approach gives an optimal solution, it takes a long execution time to find the solution. Due to the long execution time, the ILP‐based approach is not suitable for the real‐time VNF placement problem. To address this challenge, we proposed a heuristic based on dynamic programming that performs better than the existing approaches. The simulation results of the proposed solution using real‐world topologies show that the heuristic approach finds a feasible solution that is only 1 to 1.34 times far from the optimal one. Moreover, experimental results show that the proposed heuristic is 15 to 423 times faster than the ILP.

Publisher

Wiley

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3