Rare earth element stripping from kaolin sands via mild acid treatment

Author:

Koch Max1,Paper Michael2,Brück Thomas B.2,Nilges Tom1ORCID

Affiliation:

1. Synthesis and Characterization of Innovative Materials, School of Natural Sciences (NAT), Department of Chemistry Technical University of Munich Garching 85748 Germany

2. Werner Siemens‐Chair of Synthetic Biotechnology, School of Natural Sciences (NAT). Department of Chemistry Technical University of Munich Garching 85748 Germany

Abstract

AbstractDue to their chemical and physical properties, rare earth elements (REEs) are essential in modern applications such as energy conversion or IT technology. The increasing demand for these elements leads to strong incentives for REE recovery and induces the exploration of new, alternative sources for REEs. Accessing REEs from clay minerals, in our case kaolinite, by an elution process is a promising method. The present study investigates the potential application of REE recovery through elution with different mineral acids (HNO3, H2SO4, and HCl) in a microwave process. The material used in this study—residues from an industrial kaolin production process—contained 2.47 g/kg REEs which is a significant amount for REE recovery. The ability of various mineral acids to solubilize metals was studied to assess the REE content of this residual resource. Around 1.87 g/kg of REEs was eluted from industrial kaolinite residues in hydrochloric acid, 1.71 g/kg in sulfuric acid, and 1.13 g/kg in nitric acid.

Funder

Graduate School, Technische Universität München

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Publisher

Wiley

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3