The Apical Polarity Determinant Crumbs 2 Is a Novel Regulator of ESC-Derived Neural Progenitors

Author:

Boroviak Thorsten1,Rashbass Penny1

Affiliation:

1. Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN United Kingdom

Abstract

Abstract ESCs undergoing neural differentiation in vitro display an intrinsic heterogeneity with a large subset of the cells forming polarized neural rosettes that maintain the neural progenitor microenvironment. This heterogeneity is not only necessary for normal development but also causes substantial technical challenges for practical applications. Here, we report a novel regulator of early neural progenitors, the apical polarity protein Crb2 (Crumbs homologue 2). Employing monolayer differentiation of mouse ESCs to model neurogenesis in vitro, we find that Crb2 is upregulated with Sox1 and Musashi at the onset of neuroepithelial specification and localizes to the apical side of neural rosettes. Stable Crb2-knockdown (KD) lines die at the onset of neural specification and fail to stabilize several apical polarity proteins. However, these cells are able to proliferate under self-renewing conditions and can be differentiated into mesodermal and endodermal lineages. Conversely, Crb2 overexpression during neural differentiation results in elevated levels of other apical polarity proteins and increases proliferation. Additionally, sustained overexpression of Crb2 reduces terminal differentiation into TuJ1-positive neurons. Furthermore, we demonstrate that Crb2 overexpression under self-renewing conditions increases glycogen synthase kinase (GSK)-3β inhibition, correlating with an increase in clonogenicity. To confirm the importance of GSK-3β inhibition downstream of Crb2, we show that Crb2-KD cells can be forced into neural lineages by blocking GSK-3β function and supplementing Epidermal Growth Factor (EGF) and basic Fibroblast Growth Factor (bFGF). Thus, this is the first demonstration that a member of the Crumbs family is essential for survival and differentiation of ESC-derived neural progenitors.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3