New insight and experimental study of ineffective void in hydrodynamic performance of countercurrent‐flow packing column

Author:

Xu Bin1,Gao Ge1,Gao Xiaoyi1,Jiang Wufeng1,Li Xiaoshan1,Luo Cong1,Wu Fan1,Zhang Liqi1ORCID

Affiliation:

1. State Key Laboratory of Coal Combustion, School of Energy and Power Engineering Huazhong University of Science and Technology Wuhan Hubei People's Republic of China

Abstract

AbstractExtensive experimental research and hydrodynamic models have been proposed to guide the design of superior packings. However, most research has concentrated on the effective void (ε − H) of packing while ignoring the ineffective void (ε − H − HL), which causes discrepancies in hydrodynamic performance compared to actual observations. This study evaluated the hydrodynamic performance under diverse conditions considering the liquid holdup (H), pressure drop (ΔP), and gas flooding velocity (uf). A novel approach to hydrodynamic model construction is introduced by incorporating an ineffective void. The results indicate that at a constant hold‐up area, liquid flow (L) and viscosity (μ) significantly influence liquid hold up, moderated by the gas velocity in the flooding area. The pressure drop rises as the viscosity, gas flow rate, and liquid flow rate increase. Notably, a considerable pressure drop initiates flooding at the bottom of the absorber. Elevated liquid flow rates and viscosities correlate with higher ineffective void values (HL) in the packing column. At low gas flow rates, the gas flow rate marginally affects HL values. However, after the flooding point was achieved, the values of HL rapidly increased as the gas flow rate increased. Moreover, a linear relationship emerges between the liquid holdup and HL, as evidenced by the consistent variation in the liquid holdup and the F‐factor. Utilizing the ineffective void yields a more accurate fit for the experimental data, reducing the average absolute relative deviation to 10.2%, 7.4%, and 10.8%, respectively.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3