Being confident in confidence scores: calibration in deep learning models for camera trap image sequences

Author:

Dussert Gaspard1ORCID,Chamaillé‐Jammes Simon2ORCID,Dray Stéphane1ORCID,Miele Vincent1ORCID

Affiliation:

1. Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive Villeurbanne France

2. CEFE, Université de Montpellier, CNRS, EPHE, IRD Montpellier France

Abstract

AbstractIn ecological studies, machine learning models are increasingly being used for the automatic processing of camera trap images. Although this automation facilitates and accelerates the identification step, the results of these models may lack interpretability and their immediate applicability to ecological downstream tasks (e.g. occupancy estimation) remains questionable. In particular, little is known about their calibration, a property that allows confidence scores to be interpreted as probabilities that model's predictions are true. Using a large and diverse European camera trap dataset, we investigate whether deep learning models for species classification in camera trap images are well calibrated. Additionally, as camera traps are often configured to take multiple photos of the same event, we also explore the calibration of predictions aggregated across sequences of images. Finally, we study the effect and the practicality of a post‐hoc calibration method, i.e. temperature scaling, for predictions made at image and sequence levels. Based on five established models and three independent test sets, we show that averaging the logits over the sequence, selecting an appropriate architecture, and optionally using temperature scaling can produce well‐calibrated models. Our findings have clear implication for, for instance, the calculation of error rates or the selection of confidence score thresholds in ecological studies making use of artificial intelligence models.

Funder

Grand Équipement National De Calcul Intensif

Publisher

Wiley

Reference46 articles.

1. AI Naturalists Might Hold the Key to Unlocking Biodiversity Data in Social Media Imagery

2. Beery S. Agarwal A. Cole E.&Birodkar V.(2021)The iWildCam 2021 competition dataset (arXiv:2105.03494). arXivhttp://arxiv.org/abs/2105.03494

3. Beery S. Morris D.&Yang S.(2019)Efficient pipeline for camera trap image review (arXiv:1907.06772). arXivhttps://doi.org/10.48550/arXiv.1907.06772

4. Bojarski M. Del Testa D. Dworakowski D. Firner B. Flepp B. Goyal P.et al. (2016)End to end learning for self‐driving cars (arXiv:1604.07316). arXivhttps://doi.org/10.48550/arXiv.1604.07316

5. Automated wildlife image classification: An active learning tool for ecological applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3