Improving the blend of multiple weather forecast sources by Reliability Calibration

Author:

Rust Fiona M.1ORCID,Evans Gavin R.1ORCID,Ayliffe Benjamin A.1ORCID

Affiliation:

1. Met Office Exeter UK

Abstract

AbstractCreating a forecast that is seamless across time yet is optimal at each forecast validity time is often achieved by blending forecasts from multiple Numerical Weather Prediction models (or using other forecast sources, such as an extrapolation nowcast). With the increasing usage of convection‐permitting ensemble models at shorter lead times, the blending of these forecasts with longer‐range ensemble models with parameterized convection can lead to a clear transition from one forecast source to another. This is particularly noticeable when visualizing the evolution of the gridded forecast. Calibrating the forecast sources with a common truth prior to blending provides a method of improving forecast skill whilst also unifying the characteristics of the forecasts to create a smoother blend throughout the evolution of the forecast. In this work, a non‐parametric method for calibrating the reliability of the forecast without degrading the forecast resolution is assessed for its usability for gridded precipitation rate and total cloud amount forecasts. Reliability is markedly improved resulting in a similar skill between forecast sources during the blending period. Further refinements to the technique removed artefacts in the gridded forecasts. Caveats, including a reduction in sharpness following calibration, are also presented.

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3