Controlling an automatic voltage regulator using a novel Harris hawks and simulated annealing optimization technique

Author:

Izci Davut1ORCID,Ekinci Serdar1ORCID,Zeynelgil Hatice Lale2ORCID

Affiliation:

1. Department of Computer Engineering Batman University Batman Turkey

2. Department of Electrical Engineering Istanbul Technical University Istanbul Turkey

Abstract

AbstractMaintaining the terminal voltage of a power system is a crucial process and this can be achieved via a system named automatic voltage regulator (AVR). However, an AVR needs an appropriate control method. In this context, this article proposes a novel Harris hawks optimization (HHO) and simulated annealing (SA) technique which can be used for AVR. The proposed optimization technique (HHO‐SA) combines the good exploration feature of HHO with the exceptional local search feature of SA. The HHO‐SA algorithm is introduced as a novel design method to obtain the optimum parameters for proportional + integral + derivative plus second order derivative (PID + DD) controller adopted in the AVR. Time domain objective function of the system is effectively minimized and the best PID + DD parameters are obtained. The analysis of statistical tests, convergence, transient and frequency responses, root locus, and disturbance rejection along with robustness are conducted for verifying the efficiency of the HHO‐SA algorithm. Also, the performance of the HHO‐SA tuned PID + DD controller on AVR is compared with the original HHO tuned PID + DD along with PID, FOPID, and PID + DD controllers that are adjusted by state‐of‐the‐art metaheuristic methods. The practical implementation of the proposed controller is also demonstrated in this work. The extensive simulation results and comparisons with the existing controllers adopting the same set of data demonstrate the superior control performance and good robustness of the HHO‐SA tuned PID + DD controller.

Publisher

Wiley

Subject

Modeling and Simulation,Control and Systems Engineering,Energy (miscellaneous),Signal Processing,Computer Science Applications,Computer Networks and Communications,Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3