Affiliation:
1. Department of Statistics and Data Science Cornell University Ithaca New York USA
2. Department of Electrical Engineering and Department of Statistics Stanford University Stanford California USA
3. Department of Mathematics Stanford University Stanford California USA
Abstract
AbstractGiven a graph of degree over vertices, we consider the problem of computing a near maximum cut or a near minimum bisection in polynomial time. For graphs of girth , we develop a local message passing algorithm whose complexity is , and that achieves near optimal cut values among all ‐local algorithms. Focusing on max‐cut, the algorithm constructs a cut of value , where is the value of the Parisi formula from spin glass theory, and (subscripts indicate the asymptotic variables). Our result generalizes to locally treelike graphs, that is, graphs whose girth becomes after removing a small fraction of vertices. Earlier work established that, for random ‐regular graphs, the typical max‐cut value is . Therefore our algorithm is nearly optimal on such graphs. An immediate corollary of this result is that random regular graphs have nearly minimum max‐cut, and nearly maximum min‐bisection among all regular locally treelike graphs. This can be viewed as a combinatorial version of the near‐Ramanujan property of random regular graphs.
Funder
National Science Foundation
Office of Naval Research
Subject
Applied Mathematics,Computer Graphics and Computer-Aided Design,General Mathematics,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献