Broadening the product portfolio with cellulose and lignin nanoparticles in an elephant grass biorefinery

Author:

Scopel Eupidio1,Camargos Camilla H. M.1,Pinto Lidiane O.1,Trevisan Henrique12,Ferreira Elisa S.13,Rezende Camila A.1ORCID

Affiliation:

1. Institute of Chemistry University of Campinas Campinas SP Brazil

2. Molecular, Macromolecular Chemistry, and Materials CNRS, UMR 7167, ESPCI‐Paris, PSL Research University Paris France

3. Department of Wood Science University of British Columbia Vancouver BC Canada

Abstract

AbstractCellulose and lignin nanoparticles are high‐value‐added products obtained from lignocellulosic biomasses through several steps of cellulose purification and lignin extraction. These steps drastically reduce the potential feedstock revenue when carried out as stand‐alone methodologies. To increase biomass yields, we describe here a strategy to design a biorefinery focused on producing cellulose and lignin nanoparticles as main products, but also aim to recover and benefit from other biomass components using only water‐based processes. Sequential pressurized liquid extractions and diluted acid and alkaline treatments were carried out to fractionate elephant grass biomass, yielding (for every 100 g of biomass): 30 g of cellulose pulp (converted to 9 g of cellulose nanocrystals and 9 g of cellulose nanofibers); 10 g of lignin (used to produce 8.5 g of stable colloidal lignin nanoparticles by probe‐sonication in water); 7.5 g of extractives (e.g. sterols and phenolics) and 23 g of xylose (converted to 4.1 g of furfural). Alternatively, to allow for the flexible use of the cellulose fraction in the proposed biorefinery, 22 g of glucose could be produced by enzymatic hydrolysis. The results demonstrate that water‐based processes are suitable for a holistic use of biomass, providing a comprehensive set of high‐value‐added co‐products that are renewable and cost‐effective chemical, cosmetic, food, polymer and pharmaceutical solutions.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Production of highly antioxidant lignin nanoparticles from a hardwood technical lignin;International Journal of Biological Macromolecules;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3