Divergent metabolism estimates from dissolved oxygen and inorganic carbon: Implications for river carbon cycling

Author:

Shangguan Qipei1ORCID,Payn Robert A.23ORCID,Hall Robert O.4,Young Fischer L.1,Valett H. Maurice5ORCID,DeGrandpre Michael D.1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry University of Montana Missoula Montana USA

2. Department of Land Resources and Environmental Sciences Montana State University Bozeman Montana USA

3. Montana Institute on Ecosystems Montana University System Bozeman Montana USA

4. Flathead Lake Biological Station University of Montana Polson Montana USA

5. Division of Biological Sciences University of Montana Missoula Montana USA

Abstract

AbstractRivers efficiently collect, process, and transport terrestrial‐derived carbon. River ecosystem metabolism is the primary mechanism for processing carbon. Diel cycles of dissolved oxygen (DO) have been used for decades to infer river ecosystem metabolic rates, which are routinely used to predict metabolism of carbon dioxide (CO2) with uncertainties of the assumed stoichiometry ranging by a factor of 4. Dissolved inorganic carbon (DIC) has been less used to directly infer metabolism because it is more difficult to quantify, involves the complexity of inorganic carbon speciation, and as shown in this study, likely requires a two‐station approach. Here, we developed DIC metabolism models using single‐ and two‐station approaches. We compared metabolism estimates based on simultaneous DO and DIC monitoring in the Upper Clark Fork River (USA), which also allowed us to estimate ecosystem‐level photosynthetic and respiratory quotients (PQE and RQE). We observed that metabolism estimates from DIC varied more between single‐ and two‐station approaches than estimates from DO. Due to carbonate buffering, CO2 is slower to equilibrate with the atmosphere compared to DO, likely incorporating a longer distance of upstream heterogeneity. Reach‐averaged PQE ranged from 1.5 to 2.0, while RQE ranged from 0.8 to 1.5. Gross primary production from DO was larger than that from DIC, as was net ecosystem production by . The river was autotrophic based on DO but heterotrophic based on DIC, complicating our understanding of how metabolism regulated CO2 production. We suggest future studies simultaneously model metabolism from DO and DIC to understand carbon processing in rivers.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3