De novo 2′‐fucosyllactose bioproduction through modular engineering of a novel Escherichia coli K12‐derived strain

Author:

Ma Chunyu1,Zhang Chunyue12,Fan Liqiang12,Deng Chen12,Zhao Liming123ORCID

Affiliation:

1. State Key Laboratory of Bioreactor Engineering, School of Biotechnology East China University of Science and Technology Shanghai China

2. Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT) Shanghai China

3. Organ Transplant Center Shanghai Changzheng Hospital Shanghai China

Abstract

AbstractThe most abundant human milk oligosaccharide 2′‐fucosyllactose (2′‐FL) is a valuable component that has gained significant attention from the food industry. To biosynthesize 2′‐FL, various Escherichia coli K12 derivatives have been genetically modified. To further enhance the application performance of E. coli K12, a novel E. coli K12 derivative BL27 was used as a chassis cell in this study, and modular pathway enhancement was performed to achieve de novo synthesis of 2′‐FL. The futC gene encoding α‐1,2‐fucosyltransferase was introduced, and the wcaJ gene was knocked out to prevent the conversion of GDP‐ l‐fucose to colanic acid. Next, the effects of overexpressing transcriptional regulators rcsA and rcsB and knocking out transcriptional regulators mcbR and waaF were evaluated to optimize the colanic acid pathway. The expression level, solubility, and activity of FutC were improved through genomic integration, TrxA‐tag fusion, and double mutation in F40S/Q237S. Fermentation conditions were optimized to achieve maximum 2′‐FL titers of 3.86 and 23.56 g/L in shake‐flask and fed‐batch cultivation, respectively. Over 85% of the products were successfully excreted into extracellular and almost no byproduct 2′,3‐difucosyllactose was generated. This study has explored a new microbial platform and modification strategies for the synthesis of 2′‐FL and provides opportunities for its commercial production.

Funder

Natural Science Foundation of Shanghai

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3