Affiliation:
1. Department of Control Engineering Faculty of Electrical Engineering, Czech Technical University in Prague Prague Czech Republic
2. CNRS Laboratory for Analysis and Architecture of Systems Toulouse France
Abstract
AbstractThis paper presents a method for calculating the Region of Attraction (ROA) of nonlinear dynamical systems, both with and without control. The ROA is determined by solving a hierarchy of semidefinite programs (SDPs) defined on a splitting of the time and state space. Previous works demonstrated that this splitting could significantly enhance approximation accuracy, although the improvement was highly dependent on the ad‐hoc selection of split locations. In this work, we eliminate the need for this ad‐hoc selection by introducing an optimization‐based method that performs the splits through conic differentiation of the underlying semidefinite programming problem. We provide the differentiability conditions for the split ROA problem, prove the absence of a duality gap, and demonstrate the effectiveness of our method through numerical examples.
Funder
Grantová Agentura České Republiky
European Commission