Exploring the dynamic microbial tapestry of South Asian rivers: insights from the Ganges and Yamuna ecosystems

Author:

Chaturvedi Sadashiv1,Chakraborty Biswameet2,Min Liu1,Kumar Amit1ORCID,Pathak Bikram2,Kumar Rupesh3,Yu Zhi‐Guo1

Affiliation:

1. Key Laboratory of Hydrometeorological Disaster Mechanism and Warning, Ministry of Water Resources/School of Hydrometeorology and Water Resources Nanjing University of Information Science and Technology Nanjing 210044 China

2. Applied Microbiology, Department of Botany, Institute of Science Banaras Hindu University Varanasi India

3. Jindal Global Business School (JGBS) O.P. Jindal Global University Sonipat Haryana 131001 India

Abstract

AbstractThis review meticulously examines the dynamics of river microbiomes, with an emphasis on the Ganges and Yamuna rivers of South Asia. These rivers are vital for both ecological and cultural landscapes and offer to understand the interaction between ecological and anthropogenic factors and their impact on microbial communities and activities. Ecological and hydrological factors such as seasonal changes, water flow and physico‐chemical properties of rivers influence microbial diversity and abundance. The effect of heavy metals from industrial and agricultural sources on the river microbiome and how these pollutants modify microbial community structures and ecosystem health are not understood well yet. This underscores the need for sustainable water treatment and remediations for practical engineering solutions. The study reveals how these interactions, whether symbiotic or competitive, affect the composition and functionality of riverine microbial communities. An innovative aspect of our research is the potential of river microbiomes as indicators of urban sewage contamination. We demonstrate how microbial patterns can signal pollution levels, proving valuable for environmental monitoring, management and mitigation. A special attention to the role of microbes in river ecosystems' biogeochemical cycles has been paid to how these microbes contribute to nutrient recycling, organic matter decomposition and overall ecosystem productivity, underlining their crucial role in maintaining the aesthetic value of the river. Additionally, study evaluates the latest methodologies for analysing microbiome metagenomic data, including functional annotation and microbial community analysis techniques. Findings highlight the key importance of understanding river microbiomes for hydrology, ecology and microbiology researchers.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3