Self‐assembling Monolayer‐Assisted Perovskite Growth Enables High‐Performance Solar Cells

Author:

Li Jun12,Xie Lisha2,Yang Shuncheng2,Tong Xinyu2,Pu Zhenwei2,Yang Mengjin2,Wu Yujie1,Yang Daobin2,Wang Tao1,Ge Ziyi2

Affiliation:

1. School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou Zhejiang 310018 China

2. Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences Ningbo Zhejiang 315201 China

Abstract

Comprehensive SummaryInverted (p‐i‐n) perovskite solar cells (PSCs) are favored by researchers owing to their superior compatibility with flexible substrates and tandem device fabrication. Additionally, the hole transport layer (HTL) serves as a template for perovskite growth, which is critical for enhancing the device performance. However, the current research on how the HTL promotes perovskite crystallization is insufficient. Here, 4PADCB, a self‐assembled monolayer (SAM) hole transport material, was optimized as a superior template for perovskite growth through comparative analysis; accordingly, compact perovskite film with vertical growth was prepared. The better matched energy level alignment between 4PADCB and perovskite suppressed nonradiative recombination at the interface and enabled rapid hole extraction. Moreover, high‐quality perovskite film growth on 4PADCB exhibited lower Young's modulus and less residual stress. By integrating 4PADCB into p‐i‐n PSCs, the optimal device achieved a power conversion efficiency of 24.80%, with an open‐circuit voltage of 1.156 V, thus achieving the best rank among devices without perovskite post‐treatment, additives, dopants, or intermediate layers. Furthermore, the unencapsulated device demonstrated exceptional thermostability and photostability under maximum power point tracking. Thus, this work provides a new understanding for the development of novel SAMs and perovskite growth, and it is expected to further improve device performance.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

National Science Fund for Distinguished Young Scholars

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3