In situ Injectable Tetra‐PEG Hydrogel Bioadhesive for Sutureless Repair of Gastrointestinal Perforation

Author:

Li Shurong1,Xian Yiwen1,He Gang12,Chen Luyuan2,Chen Zhihui2,Hong Yonglong2,Zhang Chong1,Wu Decheng1

Affiliation:

1. Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering Southern University of Science and Technology No. 1088 Xueyuan Avenue, Nanshan District Shenzhen Guangdong 518055 China

2. Stomatology Center, Shenzhen Hospital Southern Medical University No. 1333 New Road, Baoan District Shenzhen Guangdong 518101 China

Abstract

Comprehensive SummaryHydrogel bioadhesives represent promising and efficient alternatives to sutures or staples for gastrointestinal (GI) perforation management. However, several concerns remain for the existing bioadhesives including slow and/or weak adhesive, poor mechanical strength, low biocompatibility, and poor biodegradability, which largely limit their clinical application in GI perforation repair. In this work, we introduce an in situ injectable Tetra‐PEG hydrogel bioadhesive (SS) composed of tetra‐armed poly(ethylene glycol) amine (Tetra‐PEG‐NH2) and tetra‐armed poly(ethylene glycol) succinimidyl succinate (Tetra‐PEG‐SS) for the sutureless repair of GI defects. The SS hydrogel exhibits rapid gelation behavior and high burst pressure and is capable of providing instant robust adhesion and fluid‐tight sealing in the ex vivo porcine intestinal and gastric models. Importantly, the succinyl ester linkers in the SS hydrogel endow the bioadhesive with suitable in vivo degradability to match the new GI tissue formation. The in vivo evaluation in the rat GI injured model further demonstrates the successful sutureless sealing and repair of the intestine and stomach by the SS hydrogel with the advantages of neglectable postsurgical adhesion, suppressed inflammation, and enhanced angiogenesis. Together, our results support potential clinical applications of the SS bioadhesive for the high‐efficient repair of GI perforation.

Funder

National Natural Science Foundation of China

National Science and Technology Major Project

Science, Technology and Innovation Commission of Shenzhen Municipality

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3