Coherent Addressing of Single Molecular Electron Spin Qubits

Author:

Du Xiya12,Zhou Aimei12,Sun Lei123

Affiliation:

1. Department of Chemistry School of Science and Research Center for Industries of the Future, Westlake University 600 Dunyu Road Hangzhou Zhejiang 310030 China

2. Institute of Natural Sciences, Westlake Institute of Advanced Study 18 Shilongshan Road Hangzhou Zhejiang 310024 China

3. Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science Westlake University 600 Dunyu Road Hangzhou Zhejiang 310030 China

Abstract

AbstractWith rational designability, versatile tunability, and quantum coherence, molecular electron spin qubits could offer new opportunities for quantum information science, enabling simplified implementation of quantum algorithms and chemical‐specific quantum sensing. The development of these transformative technologies relies on coherent addressing of single molecular electron spin qubits with high initialization, manipulation, and readout fidelities. This is unfeasible to conventional electron spin resonance spectroscopy, which is widely used for coherent addressing of ensemble electron spins, due to its low initialization efficiency and readout sensitivity. Taking advantage of single spin detectability of single‐molecule spectroscopy, scanning tunneling microscopy, atomic force microscopy, and quantum metrology, several strategies have been developed to empower electron spin resonance spectroscopy with single qubit addressability. In this Emerging Topic, we introduce principles and technical implementation of strategies for coherent addressing of single molecular electron spin qubits, discuss their potential applicability in quantum technologies, and point out their challenges in terms of scalability, molecular design, and/or decoherence suppression. We discuss future directions to overcome these challenges and to improve single qubit addressing technologies, which will facilitate the advancement of molecular quantum information science.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3