Anisotropic Plasmon Resonance Enables Spatially Controlled Photothermal and Photochemical Effects in Hot Carrier‐Driven Catalysis

Author:

Wang Jiaqi1,Zhu Zhijie1,Feng Kai12,Liu Shuang1,Zhou Yuxuan1,Urooj Ifra3,He Jiari1,Wu Zhiyi1,Shen Jiahui1,Hu Xu1,Chen Zhijie1,Dong Xudong1,Sohail Manzar3,Ma Yanyun12,Chen Jinxing12,Li Chaoran14,An Xingda12,He Le12

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University Suzhou Jiangsu 215123 China

2. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou Jiangsu 215123 China

3. Department of Chemistry, School of Natural Sciences National University of Sciences and Technology Islamabad 44000 Pakistan

4. Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China

Abstract

Comprehensive SummaryLocalized surface plasmon resonance has been demonstrated to provide effective photophysical enhancement mechanisms in plasmonic photocatalysis. However, it remains highly challenging for distinct mechanisms to function in synergy for a collective gain in catalysis due to the lack of spatiotemporal control of their effect. Herein, the anisotropic plasmon resonance nature of Au nanorods was exploited to achieve distinct functionality towards synergistic photocatalysis. Photothermal and photochemical effects were enabled by the longitudinal and transverse plasmon resonance modes, respectively, and were enhanced by partial coating of silica nanoshells and epitaxial growth of a reactor component. Resonant excitation leads to a synergistic gain in photothermal‐mediated hot carrier‐driven hydrogen evolution catalysis. Our approach provides important design principles for plasmonic photocatalysts in achieving spatiotemporal modulation of distinct photophysical enhancement mechanisms. It also effectively broadens the sunlight response range and increases the efficacy of distinct plasmonic enhancement pathways towards solar energy harvesting and conversion.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3