Piezoelectric Zinc Oxides with High Polar Facets Ratios for Mechanically Controlled RAFT Polymerization

Author:

Ding Chengqiang1,Ren Ziye1,Wang Jian1,Zhang Longfei1,Yan Yuhan1,Wu Danming1,Wang Zhao1,Zhang Zhengbiao12

Affiliation:

1. State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China

2. State Key Laboratory of Radiation Medicine and Protection Soochow University Suzhou Jiangsu 215123 China

Abstract

Comprehensive SummaryMechanoredox chemistry that uses highly polarized piezoelectric materials as mechanoredox catalysts to promote redox reactions has emerged recently. It provides an alternative approach alongside the existing polymerization methods. Despite recent accomplishments, determining the quantitative relationship between the structure of ZnO and its catalytic performance for polymerization is still challenging. Herein, we prepared various ZnO crystals with different polar facets ratios to achieve efficient mechanically induced reversible addition‐fragmentation chain transfer polymerization (mechano‐RAFT). ZnO prepared from Zn(NO3)2 showed a high polar facet ratio of 1.66 and offered the highest catalytic activity among all ZnO samples. A near‐quantitative initiator efficiency of 99.5% and narrow molecular weight distribution were achieved for the polymerization of n‐butyl acrylate. Furthermore, the high chain‐end fidelity and chain extension capability were also evidenced by MALDI‐TOF MS and GPC analysis. This work highlighted the significant contribution of polar facets in ZnO to its catalytic activity and will guide the design of mechanoredox catalysis with superior catalytic performance in the future.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Science and Technology Program of Suzhou

Publisher

Wiley

Subject

General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3