Radicals as Chiral Catalysts for Asymmetric Radical Cyclization Reactions

Author:

Zhao Quan‐Qing1,Gu Min1,Chen Jia‐Rong2

Affiliation:

1. Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University Lianyungang Jiangsu 222005 China

2. Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University Wuhan Hubei 430079 China

Abstract

AbstractDue to the innate highly reactive properties and short life‐time, organic free radicals can often serve as promoters or intermediates to engage in various radical transformations, which are often otherwise difficult to access by ionic pathway‐based mechanisms. With the evolvement of radical chemistry, chiral radical catalyzed‐transformations have recently emerged as an attractive and robust platform for synthesis of chiral molecules of interest. Herein, we highlight several creative and strategic advances in chiral radical catalyst design, cyclization reaction achievements, and future challenges. Key ScientistsIn the 1980s, some pioneering studies by Feldman and Oshima revealed that the thiyl radical could catalyze cyclization of vinylcyclopropane with alkenes, providing access to racemic cyclopentanes. In 1996, Brian P. Roberts reported an interesting enantioselective hydrosilylation of prochiral alkenes by using thioglucose‐derived chiral thiyl radical catalysts. Since then, chiral radical catalysis has become an emerging and promising catalytic strategy in organic synthesis. However, this field has not been extensively explored further until the Maruoka group in 2014 achieved the asymmetric C—C bond formation by employing a newly designed indanol core‐based chiral thiyl radical catalyst. In this protocol, an enantioselective radical cyclization of vinylcyclopropanes with electron‐rich alkenes was developed. In 2020, Chen and Xiao disclosed a nitrogen radical‐catalyzed version of this reaction. Later, this strategy was further expanded to metalloradical catalyzed asymmetric radical cascade cyclization reactions by Zhang in 2021. Later on, Wang, Fu and Zhang et al. described a novel class of boryl radical‐catalyzed asymmetric radical cycloisomerization reactions, further showcasing enormous synthetic potential of chiral radical catalysis. This Emerging Topic has focused on asymmetric radical cyclization reactions involving diverse chiral radical catalysts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3