Yeast‐Controlled Double‐Shelled CaCO3/CaF2 Hollow Nanospheres with Hierarchically Porous for Sustained pH‐Sensitive Drug Release

Author:

Liu Xinhe1,Chang Yi2,Ma Guanglei2,Liu Tingting1,Song Penghui1,Yu Heng1,Ren Xueqing1,Guo Yuming2,Ma Xiaoming1

Affiliation:

1. School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China

2. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan 453007 China

Abstract

Comprehensive SummaryHierarchically porous materials (HP materials) are believed one of the most hopeful matrix materials because of their distinctive multimodal pore structures and tremendous application potentials in the field of biomedicine. However, green and facile synthesis of hierarchically porous nanomaterials with beneficial water dispersibility and biocompatibility is still a great challenge. Herein, a novel biomimetic strategy is proposed to prepare the cell‐tailored double‐shelled HPCaCO3/CaF2 hollow nanospheres under the mediation of yeast cells. The biomolecules derived from the secretion of yeast cells are used as conditioning and stabilizing agents to control the biosynthesis of the HPCaCO3/CaF2 materials, which exhibit excellent water dispersibility and favorable biocompatibility. The double‐shelled CaCO3/CaF2 nanospheres hold hierarchically porous structure and have abundant pore channel and large specific surface area, showing high drug‐loading and a prolonged drug sustainable release profile by the pore‐by‐pore diffusion pattern of the hierarchical pores. Otherwise, the HPCaCO3 with pH‐sensitivity could controllably release drug doxorubicin hydrochloride (DOX) at the acidic tumor microenvironment. Both in vitro and in vivo results demonstrate that HPCaCO3/CaF2 has the sustainable pH‐sensitive drug release property, showing an enhanced therapeutic effect. Summarily, this study provides a biomimetic strategy to synthesize the hierarchically porous double‐shelled hollow nanomaterials for applying in sustainable drug delivery system.

Funder

Natural Science Foundation of Henan Province

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Calcium-based nanomaterials for cancer therapy;Journal of Materials Science;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3