Affiliation:
1. School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
2. Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Henan Normal University Xinxiang Henan 453007 China
Abstract
Comprehensive SummaryHierarchically porous materials (HP materials) are believed one of the most hopeful matrix materials because of their distinctive multimodal pore structures and tremendous application potentials in the field of biomedicine. However, green and facile synthesis of hierarchically porous nanomaterials with beneficial water dispersibility and biocompatibility is still a great challenge. Herein, a novel biomimetic strategy is proposed to prepare the cell‐tailored double‐shelled HPCaCO3/CaF2 hollow nanospheres under the mediation of yeast cells. The biomolecules derived from the secretion of yeast cells are used as conditioning and stabilizing agents to control the biosynthesis of the HPCaCO3/CaF2 materials, which exhibit excellent water dispersibility and favorable biocompatibility. The double‐shelled CaCO3/CaF2 nanospheres hold hierarchically porous structure and have abundant pore channel and large specific surface area, showing high drug‐loading and a prolonged drug sustainable release profile by the pore‐by‐pore diffusion pattern of the hierarchical pores. Otherwise, the HPCaCO3 with pH‐sensitivity could controllably release drug doxorubicin hydrochloride (DOX) at the acidic tumor microenvironment. Both in vitro and in vivo results demonstrate that HPCaCO3/CaF2 has the sustainable pH‐sensitive drug release property, showing an enhanced therapeutic effect. Summarily, this study provides a biomimetic strategy to synthesize the hierarchically porous double‐shelled hollow nanomaterials for applying in sustainable drug delivery system.
Funder
Natural Science Foundation of Henan Province
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献