Machine Learning‐Aided Data Analysis in Single‐Protein Conductance Measurement with Electron Tunneling Probes

Author:

Yang Yuxin1,Jiang Tao12,Tian Ye3,Zeng Biaofeng1,Tang Longhua12

Affiliation:

1. State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering Zhejiang University Hangzhou Zhejiang 310027 China

2. Nanhu Brain‐computer Interface Institute Hangzhou Zhejiang 311100 China

3. State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering Zhejiang University Hangzhou Zhejiang 310027 China

Abstract

Comprehensive SummaryThe electrical tunneling sensors have excellent potential in the next generation of single‐molecule measurement and sequencing technologies due to their high sensitivity and spatial resolution capabilities. Electrical tunneling signals that have been measured at a high sampling rate may provide detailed molecular information. Despite the extraordinarily large amount of data that has been gathered, it is still difficult to correlate signal transformations with molecular processes, which creates great obstacles for signal analysis. Machine learning is an effective tool for data analysis that is currently gaining more significance. It has demonstrated promising results when used to analyze data from single‐molecule electrical measurements. In order to extract meaningful information from raw measurement data, we have combined intelligent machine learning with tunneling electrical signals. For the purpose of analyzing tunneling electrical signals, we investigated the clustering approach, which is a classic algorithm in machine learning. A clustering model was built that combines the advantages of hierarchical clustering and Gaussian mixture model clustering. Additionally, customized statistical algorithms were designed. It has been proven to efficiently gather molecular information and enhance the effectiveness of data analysis.

Funder

Central University Basic Research Fund of China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

Wiley

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3