Organic Semiconductor Interfaces and Their Effects in Organic Solar Cells

Author:

Wang Chuanfei1,Li Weidong1,Zeng Qi2,Liu Xianjie3,Fahlman Mats3,Bao Qinye45

Affiliation:

1. School of Materials Science and Engineering Ocean University of China Qingdao Shandong 266100 China

2. School of Materials Science and Engineering Shanghai University of Engineering Science Shanghai 201620 China

3. Laboratory of Organic Electronics, ITN Linköping University Norrköping 60174 Sweden

4. School of Physics and Electronic Science East China Normal University Shanghai 200241 China

5. Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics Fudan University Shanghai 200433 China

Abstract

Comprehensive SummaryEnergy levels and energy level alignment at interfaces play a decisive role in designing efficient and stable organic solar cells (OSCs). In this review two usually used technologies in organic photovoltaic communities for measuring energy levels of organic semiconductors, photoelectron spectroscopy and electrochemical methods, are introduced, and the relationships between the values obtained from the corresponding techniques are compared. The energy level and energy level alignment across the interfaces involved in solution processed organic photovoltaics are described, and the corresponding integer charge transfer model for predicting and explaining energy level alignment is presented. The effects of the interface properties in designing efficient binary and ternary OSCs were discussed. The effects of environmental factors mainly including water vapor, oxygen gas and thermal annealing on energy levels and energy level alignment involved in photoactive layers, and the subsequent effects on the corresponding OSC properties are given.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3