Acidic Electrocatalytic Semihydrogenation of Alkynols to Alkenols on Copper Phosphide at Industrial‐Level Current Density

Author:

Yang Sanyin12,Bu Jun1,Bai Rui2,Lin Jin2,An Siying1,Wu Yafei1,Guo Ying1,Gao Jie3,Zhang Jian12

Affiliation:

1. School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an Shaanxi 710129 China

2. State Key Laboratory of Solidification Processing, School of Materials Science and Engineering Northwestern Polytechnical University Xi'an Shaanxi 710072 China

3. Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences Northwestern Polytechnical University Xi'an Shaanxi 710072 China

Abstract

Comprehensive SummaryAlkenols are important intermediates for the industrial manufacture of various commodities and fine chemicals. At present, alkenols are produced via thermocatalytic semihydrogenation of corresponding alkynols using precious metal Pd‐based catalysts in pressurized hydrogen atmosphere. In this work, we highlight an efficient electrocatalytic strategy for selectively reducing alkynols to alkenols under ambient conditions. Using 2‐methyl‐3‐butyn‐2‐ol as a model alkynol, Cu3P nanoarrays anchored on Cu foam remarkably deliver an industrial‐level partial current density of 0.79 A·cm–2 and a specific selectivity of 98% for 2‐methyl‐3‐buten‐2‐ol in acidic solution. Over a 40‐runs stability test, Cu3P nanoarrays maintain 90% alkynol conversion and 90% alkenol selectivity. Even in a large two‐electrode flow electrolyser, the single‐pass alkynol conversion and alkenol selectivity of Cu3P nanoarrays exceed 90%. Moreover, this selective electrocatalytic hydrogenation approach is broadly feasible for the production of various water‐soluble alkenols. Electrochemical analyses, theoretical simulation and electrochemical in‐situ infrared investigations together reveal that exothermic alkynol hydrogenation, facile alkenol desorption and formation of active H on Cu3P surfaces account for the excellent electrocatalytic performance.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3