Selective Construction of Borromean Rings and Tweezer‐Like Molecular Assembly Featuring Cp*Rh/Ir Clips for Near‐Infrared Photothermal Conversion

Author:

Zou Yan1,Zhang Hai‐Ning1,Mu Qiu‐Shui1,Dang Li‐Long12,Jin Guo‐Xin1

Affiliation:

1. Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University Shanghai 200438 China

2. College of Chemistry and Chemical Engineering, Luoyang Normal University, Henan Province Function‐Oriented Porous Materials Key Laboratory Luoyang Henan 471934 China

Abstract

Comprehensive SummaryMaking full use of coordination‐driven self‐assembly strategy, we herein described the selective synthesis of a molecular Borromean rings and two cases of “U”‐shaped tweezer‐like molecular assemblies in high yield by using bipyridyl ligands based on biphenyl unit and half‐sandwich binuclear rhodium(III)/iridium(III) building blocks. The selective synthesis was realized by adjusting the length of dipyridyl arms. The utilization of curved U‐shaped bipyridyl ligand L1 led to tweezer‐like molecular assemblies. Subsequently, olefinic bonds were introduced to elongate dipyridyl arms obtaining ligand L2. The ligand L2 has two stable conformations, U‐shape and Z‐shape, which facilitated the formation of different topologies including the tetranuclear macrocycle and Borromean rings with different building blocks in this work. These structures in solid and solution all have been further confirmed by single‐crystal X‐ray diffraction, NMR analysis, and mass spectrometry. In addition, as an important driving force, π‐π stacking interactions not only played a significant role in the stability of structures but also further triggered photothermal conversion in solution. The experimental results demonstrated that compounds 1a and 2 had good NIR photothermal conversion efficiency (11.83% and 17.76%), and further analysis found the photothermal conversion efficiency had a gradual increase in the trend with the π‐π stacking interactions increasing. This research expands the application of topological structures in materials science and provides a new idea for the synthesis of novel photothermal conversion materials.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3