Affiliation:
1. College of Chemistry and Chemical Engineering Central South University Changsha Hunan 410083 China
2. Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering Hangzhou Normal University 2318 Yuhangtang Road Hangzhou Zhejiang 311121 China
3. College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics Hunan University Changsha Hunan 410082 China
Abstract
Comprehensive SummaryThe construction of acyclic quaternary carbon stereocenters, which are ubiquitous in many bioactive compounds, pharmaceuticals and natural products, has been a long persuit in synthetic organic chemistry. Among numerous methods, enantioselective nickel‐catalysis has attracted incremental attention in recent years. This review summarizes the recent development in the asymmetric strategies, research progress, mechanistic investigations for the generation of acyclic quaternary carbon stereocenters via enantioselective nickel catalysis.
Key ScientistsIn 2006, the Zhou group and RajanBabu group realized the nickel‐catalyzed enantioselective hydrovinylation of α‐substituted styrenes and ethylene to construct acyclic quaternary carbon stereocenters (QCSs) by using spiro‐ and binaphthyl phosphoramidite ligands, respectively. In 2016, Watson developed a nickel‐catalyzed Suzuki‐Miyaura arylation to generate acyclic QCSs via chirality transfer reaction. In 2017, the Feng and the Fu group developed nickel‐catalyzed enantioselective conjugated/Michael additions to build acyclic QCSs, respectively. In 2020, the Fang group made the first success in the construction of QCSs by nickel‐catalyzed hydrocyanation of alkenes and allenes. In 2021, Gregory C. Fu and co‐workers disclosed a nickel‐catalyzed enantioselective α‐functionalization of carbonyl compounds that could form acyclic QCSs. At the same time, the Shi group constructed chiral acyclic QCSs via nickel‐catalyzed functionalization of alkenes. In 2023, Kleij and co‐workers applied a new strategy for Ni‐catalyzed regio‐ and enantioselective homoallylic coupling to construct acyclic QCSs. In the same year, Tao and co‐workers demonstrated a novel strategy that is dinickel‐catalyzed enantioselective α‐alkylation of carbonyl compounds with alkyl iodides.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Foundation of Hunan Province
Zhejiang Provincial Outstanding Youth Science Foundation