Massively parallelizable proximal algorithms for large‐scale stochastic optimal control problems

Author:

Sampathirao Ajay K.1,Patrinos Panagiotis2,Bemporad Alberto3ORCID,Sopasakis Pantelis4ORCID

Affiliation:

1. Centrica Business Solutions Antwerp Belgium

2. Department of Electrical Engineering (ESAT) KU Leuven Leuven Belgium

3. IMT School for Advanced Studies Lucca Italy

4. School of Electronics, Electrical Engineering and Computer Science (EEECS) and Centre for Intelligent Autonomous Manufacturing Systems (i‐AMS) Queen's University Belfast Belfast UK

Abstract

AbstractScenario‐based stochastic optimal control problems suffer from the curse of dimensionality as they can easily grow to six and seven figure sizes. First‐order methods are suitable as they can deal with such large‐scale problems, but may perform poorly and fail to converge within a reasonable number of iterations. To achieve a fast rate of convergence and high solution speeds, in this article, we propose the use of two proximal quasi‐Newtonian limited‐memory algorithms—minfbe applied to the dual problem and the Newton‐type alternating minimization algorithm (nama)—which can be massively parallelized on lockstep hardware such as graphics processing units. In particular, we use minfbe and nama to solve scenario‐based stochastic optimal control problems with affine dynamics, convex quadratic cost functions (with the stage cost functions being strongly convex in the control variable) and joint state‐input convex constraints. We demonstrate the performance of these methods, in terms of convergence speed and parallelizability, on large‐scale problems involving millions of variables.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Wiley

Subject

Applied Mathematics,Control and Optimization,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3