Unveiling a novel cellular stress response mechanism to photodamage

Author:

Dutta Naibedya1,Garcia Gilberto1,Higuchi‐Sanabria Ryo1

Affiliation:

1. Leonard Davis School of Gerontology University of Southern California Los Angeles California USA

Abstract

AbstractUltraviolet (UV) radiation, a component of sunlight, holds both advantageous anddetrimental effects on human health. While shorter wavelengths of UV radiationaid in melanin and vitamin D synthesis, longer wavelengths pose risks like skincancer and premature aging due to DNA damage. To combat such stress, cellsemploy various mechanisms, including the heat shock response (HSR). Activation of this response involves a highly regulated transcriptional processorchestrated by heat shock factors (HSFs). While HSF1 has been observed as a keytranscription factor for HSR, other HSFs are also found to be associated withdiverse cellular functions, including stress responses. Here, we discuss arecent study by Feng et al., published in Clinical and Translational Medicine, shedding light on the novel function of HSF4 in regulating inflammation and senescence following UV exposure. The researchers observed acomplex of HSF4 and the cofactor COIL (Coilin) at R‐loops–aberrant DNA‐RNAhybrid structures arising from UV‐induced DNA damage in human skin cells. Inthe study, they proposed the HSF4‐COIL complex at R‐loops as a potential therapeutic target to mitigate UV‐induced skin damage.

Funder

National Institute on Aging

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3