Facial synthesis of colloidal stable magnetic nanoparticles coated with high hydrophilic negative charged poly(4‐styrenesulfonic acid co‐maleic acid) sodium for water remediation

Author:

Lim Chuan Chuan1,Ng Qi Hwa12ORCID,Hoo Peng Yong12,Enche Ab Rahim Siti Kartini12,Jamalludin Mohd Riduan23,Nasib Amira Mohd12,Wicaksono Sigit Tri4,Pramata Azzah Dyah4,Zullaikah Siti5

Affiliation:

1. Faculty of Chemical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia

2. Centre of Excellence for Frontier Materials Research, (CFMR) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia

3. Faculty of Mechanical Engineering & Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia

4. Department of Materials and Metallurgical Engineering Institut Teknologi Sepuluh Nopember Surabaya Indonesia

5. Department of Chemical Engineering Institut Teknologi Sepuluh Nopember Surabaya Indonesia

Abstract

AbstractThe enhancement of the colloidal stability of magnetite nanoparticles (MNPs) for environmental‐related fields has greatly attracted researchers' attention. This study used a high hydrophilic negatively charged polyelectrolyte, poly(4‐styrenesulfonic acid co‐maleic acid) sodium (PSAAS), to enhance the colloidal stability of MNPs. Coating of the naked MNPs with PSAAS polyelectrolyte is a simple and rapid method to obtain colloidally stable MNPs while sustaining the chemical reactivity of MNPs in water purification. The prepared PSAAS‐coated MNPs were characterized by scanning electron microscope, energy dispersive X‐ray, Fourier transform infrared, zeta potential analysis, transmission electron microscope and X‐ray diffraction. Moreover, the colloidal stability and adsorption performance tests of these naked MNPs and PSAAS‐coated MNPs (with different concentrations of PSAAS coated) were investigated and compared. PSAAS‐coated MNPs with 0.001 g/ml PSAAS coating possessed the best colloidal stability and the highest methylene blue (MB) dye removal efficiency (94.53 ± 0.69%). The adsorption isotherm and kinetic studies for the adsorption of MB onto PSAAS‐coated MNPs were well‐described by the Langmuir model and pseudo‐second‐order kinetic model. These magnetic adsorbents, with high separation efficiency, simple and low production cost and recyclable property, are promising as practicable adsorbents in water treatment.

Funder

Universiti Malaysia Perlis

Publisher

Wiley

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3