Numerical solution of the boundary value problem of elliptic equation by Levi function scheme

Author:

Pan Jinchao12,Liu Jijun12ORCID

Affiliation:

1. School of Mathematics/Shing‐Tung Yau Center of Southeast University Southeast University Nanjing People's Republic of China

2. Nanjing Center for Applied Mathematics Nanjing People's Republic of China

Abstract

AbstractFor boundary value problem of an elliptic equation with variable coefficients describing the physical field distribution in inhomogeneous media, the parametrix can represent the solution in terms of volume and surface potentials, with the drawback that the volume potential involving in the solution expression requires heavy computational costs as well as the solvability of the integral equations with respect to the density pair. We introduce an modified integral expression for the solution to an elliptic equation in divergence form under the parametrix framework. The well‐posedness of the linear integral system with respect to the density functions to be determined is rigorously proved. Based on the singularity decomposition for the parametrix, we propose two schemes to deal with the volume integrals so that the density functions can be solved efficiently. One method is an adaptive discretization scheme for computing the integrals with continuous integrands, leading to the uniform accuracy of the integrals in the whole domain, and consequently the efficient computations for the density functions. The other method is the dual reciprocity method which is a meshless approach converting the volume integrals into boundary integrals equivalently by expressing the volume density as the combination of the radial basis functions determined by the interior grids. The proposed schemes are justified numerically to be of satisfactory computation costs. Numerical examples in 2‐dimensional and 3‐dimensional cases are presented to show the validity of the proposed schemes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3