Secondary production and biomass in mussel assemblages relate to species richness and stream size but not life history

Author:

Lopez Jonathan W.1ORCID,Atkinson Carla L.1ORCID,Burrow Angela K.2ORCID,Hopper Garrett W.3ORCID,Haag Wendell R.4

Affiliation:

1. Department of Biological Sciences University of Alabama Tuscaloosa Alabama USA

2. Department of Natural Resources USDA Forest Service and University of Kentucky Lexington Kentucky USA

3. Louisiana State University and Agricultural Center, School of Renewable Natural Resources Baton Rouge Louisiana USA

4. USDA Forest Service, Southern Research Station Frankfort Kentucky USA

Abstract

AbstractIncreases in species richness with habitat area (species–area relationship, or SAR) and increases in ecosystem function with species richness (biodiversity–ecosystem functioning, or BEF) are widely studied ecological patterns. Incorporating functional trait analysis into assemblage datasets may help clarify interpretations of SAR and BEF relationships in natural ecological systems. For example, life history theory can be used to make predictions about what species are most important in generating ecosystem function given a certain set of environmental conditions. We used quantitative assemblage data for freshwater mussels at nine sites in western Alabama, USA, to test for SAR and BEF relationships. At each site, we calculated species richness, mussel assemblage density, and two fundamental metrics of ecosystem function: biomass and secondary production. We also tested whether the proportional biomass and production contributions from species belonging to each of three life history strategies—opportunistic strategists adapted to unstable or frequently disturbed habitats, periodic strategists adapted to habitats subject to predictable large‐scale disturbances, and equilibrium strategists adapted to stable habitats—varied longitudinally with stream drainage area, a proxy for habitat area. Species richness increased with stream size (SAR), and both biomass and production increased with species richness (BEF) and mussel density. There were few longitudinal changes in the proportional contributions of the different life history strategy classifications that we used, but the invasive clam Corbicula fluminea contributed proportionally more biomass and production at sites that had smaller drainage areas. This study provides further evidence for a clear longitudinal SAR in stream‐dwelling taxa. It also suggests BEF relationships for biomass and secondary production in natural assemblages but underscores the importance of assemblage density in BEF studies that use observational field data. Variation in proportional biomass and production contributions by different life history strategies was likely limited by the size of the stream size gradient in our study, as contributions were uniformly high for species with life history traits better adapted to stable and productive habitats such as mid‐sized rivers with low or predictable hydrologic disturbance frequencies. This highlights the need to understand how organisms' functional traits govern their relationships to the environment at different scales.

Funder

National Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3