Recovery of metabolites via subnivean photosynthesis in Arctic tundra plants: Implications for climate change

Author:

Wright‐Osment Nicholas1,Staudhammer Christina Lynn1ORCID,Oberbauer Steve2,Mortazavi Behzad1,Starr Gregory1ORCID

Affiliation:

1. Department of Biological Sciences University of Alabama Tuscaloosa Alabama USA

2. Department of Biological Sciences Florida International University Miami Florida USA

Abstract

AbstractPlants have evolved numerous strategies for surviving the harsh conditions of the Arctic. One strategy for Arctic evergreen and semi‐evergreen species is to photosynthesize beneath the snow during spring. However, the prevalence of this photosynthesis and how recent photosynthates are used is still unknown. Here we ask, how is newly acquired carbon beneath the snow allocated? To answer this question, we delivered isotopically labeled 13CO2 to tussock tundra plants before snowmelt. Soluble sugars and starches were preferentially enriched with 13C in all five species tested, with lipids having comparatively low 13C enrichment. These results provide evidence of the recovery of metabolites used over the long winter. Additionally, these new soluble sugars may function in photoprotection and cold tolerance as plants release from snow cover. Climate change, by reducing the duration of subnivean photosynthesis of these species, will limit metabolite production before snowmelt, which may lead to a reduction in the ability of these species to compete effectively during the growing season, potentially leading to changes in community structure.

Funder

Office of Polar Programs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3