A Bayesian approach to study design and analysis with type I error rate control for response variables of mixed types

Author:

Alt Ethan M.1ORCID,Psioda Matthew A.1ORCID,Ibrahim Joseph G.1ORCID

Affiliation:

1. Department of Biostatistics University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

Abstract

There has been increased interest in the design and analysis of studies consisting of multiple response variables of mixed types. For example, in clinical trials, it is desirable to establish efficacy for a treatment effect in primary and secondary outcomes. In this article, we develop Bayesian approaches for hypothesis testing and study planning for data consisting of multiple response variables of mixed types with covariates. We assume that the responses are correlated via a Gaussian copula, and that the model for each response is, marginally, a generalized linear model (GLM). Taking a fully Bayesian approach, the proposed method enables inference based on the joint posterior distribution of the parameters. Under some mild conditions, we show that the joint distribution of the posterior probabilities under any Bayesian analysis converges to a Gaussian copula distribution as the sample size tends to infinity. Using this result, we develop an approach to control the type I error rate under multiple testing. Simulation results indicate that the method is more powerful than conducting marginal regression models and correcting for multiplicity using the Bonferroni‐Holm Method. We also develop a Bayesian approach to sample size determination in the presence of response variables of mixed types, extending the concept of probability of success (POS) to multiple response variables of mixed types.

Funder

National Institute of Environmental Health Sciences

Publisher

Wiley

Subject

Statistics and Probability,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian design of clinical trials using the scale transformed power prior;Journal of Biopharmaceutical Statistics;2024-04-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3