Tailored BiVO4/In2O3 nanostructures with boosted charge separation ability toward unassisted water splitting

Author:

Lee Mi Gyoung1,Yang Jin Wook1,Park Ik Jae2,Lee Tae Hyung1,Park Hoonkee1,Cheon Woo Seok1,Lee Sol A.1,Lee Hyungsoo3,Ji Su Geun1,Suh Jun Min1,Moon Jooho3ORCID,Kim Jin Young1,Jang Ho Won14ORCID

Affiliation:

1. Department of Materials Science and Engineering, Research Institute of Advanced Materials Seoul National University Seoul Republic of Korea

2. Country Department of Applied Physics Sookmyung Women's University Seoul Republic of Korea

3. Department of Materials Science and Engineering Yonsei University Seoul Republic of Korea

4. Advanced Institute of Convergence Technology Seoul National University Suwon Republic of Korea

Abstract

AbstractThe development of new heterostructures with high photoactivity is a breakthrough for the limitation of solar‐driven water splitting. Here, we first introduce indium oxide (In2O3) nanorods (NRs) as a novel electron transport layer for bismuth vanadate (BiVO4) with a short charge diffusion length. In2O3 NRs reinforce the electron transport and hole blocking of BiVO4, surpassing the state‐of‐the‐art photoelectrochemical performances of BiVO4‐based photoanodes. Also, a tannin–nickel–iron complex (TANF) is used as an oxygen evolution catalyst to speed up the reaction kinetics. The final TANF/BiVO4/In2O3 NR photoanode generates photocurrent densities of 7.1 mA cm−2 in sulfite oxidation and 4.2 mA cm−2 in water oxidation at 1.23 V versus the reversible hydrogen electrode. Furthermore, the “artificial leaf,” which is a tandem cell with a perovskite/silicon solar cell, shows a solar‐to‐hydrogen conversion efficiency of 6.2% for unbiased solar water splitting. We reveal significant advances in the photoactivity of TANF/BiVO4/In2O3 NRs from the tailored nanostructure and band structure for charge dynamics.

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Materials Chemistry,Energy (miscellaneous),Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3