Research on adaptive dispatching of power system considering reserve energy storage and cost

Author:

Wang Wenzhuo1,Wang Zhiwei1,Liu Xin1,Li Wujing1,Li Qiufang1,Zhang Yagang1,Chen Qianchang1,Guo Shuyu1,Xu Zhi2

Affiliation:

1. Northwest Branch State Grid Corporation of China Xi'an China

2. Beijing TsIntergy Technology Co., Ltd Electric Business Goup Beijing China

Abstract

AbstractThe power system (PS) has the problem of grid connection of energy storage (ES) system. When the ES of the communication base station (BS) is associated with the power grid, relevant control strategies are formulated to schedule the base station energy storage (BSES). The total cost required during the scheduling period is determined using the lease income model. In the dispatching process, the BSES is applied to the peak load shifting (PLS) dispatching and economic dispatching of the PS. It is optimized by particle swarm optimization (PSO) algorithm and improved bare bone particle swarm optimization (BBPSO) algorithm. The constructed rental income model is used to calculate the total cost required during the scheduling period. In the dispatching, the BSES is applied to the PLS dispatching and economic dispatching of the PS. This model is optimized by PSO algorithm and improved BBPSO algorithm. The findings indicate that the BSES has good PLS capability. The larger the BS is, the more obvious the charging and discharging situation is. When the time is 4 h, the output load of 150,000 BSES is 486.67 MW, 341.14 MW more than that of 100,000 BSs. The discharge depth affects the lease cost, and the best discharge depth is 0.4. At this discharge depth, the larger the BS scale is, the greater the costs. In improving the performance of BBPSO algorithm, the model has the minimum convergence iteration of 15, with the best convergence effect. In the economic dispatching of PS, the total cost of accessing 200,000 BSs to store energy is 846.4658 million per year, which saves 367.4591 million. The suggested approach can effectively lower PS costs and increase stability.

Publisher

Wiley

Subject

Modeling and Simulation,Control and Systems Engineering,Energy (miscellaneous),Signal Processing,Computer Science Applications,Computer Networks and Communications,Artificial Intelligence

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transformer Winding Looseness Fault Diagnosis Based on CEEMDAN-MPE and ISSA-KELM;2023 IEEE 7th Information Technology and Mechatronics Engineering Conference (ITOEC);2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3