A new neural network model that detects graft ruptures and contralateral anterior cruciate ligament injuries

Author:

Usami Shintaro1,Kimura Yuka1ORCID,Matsuzaka Masashi2,Sasaki Yoshihiro2,Sasaki Shizuka1,Sasaki Eiji1,Tsuda Eiichi3,Ishibashi Yasuyuki1

Affiliation:

1. Department of Orthopaedic Surgery Hirosaki University Graduate School of Medicine Hirosaki Japan

2. Department of Medical Informatics Hirosaki University Hospital Hirosaki Japan

3. Department of Rehabilitation Medicine Hirosaki University Graduate School of Medicine Hirosaki Japan

Abstract

AbstractPurposeThe purpose of this study was to develop a neural network model for predicting second anterior cruciate ligament (ACL) injury risk following ACL reconstruction using patient features from medical records.MethodsOf 486 consecutive patients who underwent primary unilateral ACL reconstruction, 386 patients (198 women, 188 men) with a mean age of 25.1 ± 11.6 years were included in this study. Fifty‐eight features, including demographic data, surgical, preoperative and postoperative data, were retrospectively collected from medical records, and features with an incidence of less than 5% were excluded. Finally, 14 features were used for the analysis. The multilayer perceptron was composed of four hidden layers with a rectified linear unit as activation and was trained to maximise the area under the receiver‐operating characteristic curve (auROC). Subsequently, validation was carried out through a rigorous threefold cross‐validation process. To ascertain the most efficacious combination of features with the highest auROC, a single feature with the least impact on auROC maximisation was systematically eliminated from the comprehensive variable set, ultimately resulting in the retention of a mere two variables.ResultsThe median follow‐up period was 50.5 (24–142) months. Fifty‐seven knees had a second ACL injury, with a graft rupture rate of 7.7% and a contralateral injury rate of 6.9%. The maximum auROC for predicting graft rupture was 0.81 with two features: young age and hamstring graft. Meanwhile, the maximum auROC for predicting contralateral ACL injury was 0.74 with seven features, including young age, presence of medial meniscus tear, small body mass index, hamstring graft, female sex and medial meniscus repair or treatment.ConclusionA neural network model with patient features from medical records detected graft ruptures and contralateral ACL injuries with acceptable accuracy. This model can serve as a new, useful tool in clinical practice to inform decisions about ACL reconstruction and retuning to sports postoperatively.Level of EvidenceLevel IV.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3