Affiliation:
1. University of Belgrade, Institute of Chemistry, Technology and Metallurgy Njegoševa 12 Belgrade Serbia
Abstract
AbstractThe influence of welding current and nitrogen content in argon shielding gas on the resistance of the welded joint (weld metal and heat‐affected zone [HAZ]) of the stainless steel X5CrNi18‐10 to the formation and growth of pits was investigated. Also, the susceptibility of the welded joint to intergranular corrosion was examined. Pitting corrosion resistance indicators were determined based on anodic potentiodynamic polarization measurements in NaCl + Na2SO4 solution, while susceptibility to intergranular corrosion was determined by the potentiokinetic method with a double loop (DL EPR). SEM/EDS was used to analyze the microstructure. It has been shown that higher nitrogen content in shielding gas leads to an increase in the resistance of welded joints (weld metal and HAZ) to the pit formation. However, an improvement in the resistance to the pit formation leads to a decline in the resistance of the welded joint to pit growth. An explanation of this phenomenon is proposed. Also, it was shown that the increase of the welding current increases the susceptibility of the welded joint to intergranular corrosion, while the higher nitrogen content has no effect.
Subject
Materials Chemistry,Metals and Alloys,Surfaces, Coatings and Films,Mechanical Engineering,Mechanics of Materials,Environmental Chemistry,Materials Chemistry,Metals and Alloys,Surfaces, Coatings and Films,Mechanical Engineering,Mechanics of Materials,Environmental Chemistry,Materials Chemistry,Metals and Alloys,Surfaces, Coatings and Films,Mechanical Engineering,Mechanics of Materials,Environmental Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献