Affiliation:
1. School of Materials and Construction Guizhou Normal University Guiyang China
2. The Faculty of Engineering and Information Sciences University of Wollongong New South Wales Australia
Abstract
AbstractTo meet the application requirements of electronic connectors, a trivalent chromium process (TCP) conversion coating was prepared on the Zn–Ni alloy plating of 2024 aluminium alloy. The composition of the TCP solution was as follows: 45 g/L Cr(NO3)3, 14 g/L CoCl2, 1.3 g/L NiCl2, 10 g/L citric acid, 10 g/L succinic acid and 1 g/L sodium dodecyl sulphate. The properties of TCP were characterised by a range of techniques, including macroscopic observations, scanning electron microscope, energy‐dispersive X‐ray spectrometer, three‐dimensional (3D) morphometry, electrochemical impedance spectroscopy, polarisation curves and conductivity tests. The TCP prepared in this experiment exhibits a uniform black colour and bright appearance, predominantly composed of Zn, Ni, O, Cr and Co. The TCP enhances the impedance of Zn–Ni alloys, reduces the corrosion current to 1.99 × 10−5 A/cm2 and maintains a flatter surface 3D morphology and less surface roughness following electrochemical testing. It has better corrosion resistance. Following the preparation of the TCP on a suitably sized shell sample, the shell resistance was 1.2 mVDC with good electrical conductivity, which meets the requirements for electrical connector applications.
Funder
China Scholarship Council