Root causes for corrosion on painted steel structures in marine environments

Author:

Knudsen Ole Ø.1ORCID,Hagen Catalina H. M.1,Skilbred Anders W. B.2,Bruaas Tarjei K.3,Nærland Jarand4

Affiliation:

1. SINTEF Trondheim Norway

2. Jotun Sandefjord Norway

3. Statens Vegvesen Bodø Norway

4. Aker BP Stavanger Norway

Abstract

AbstractOur understanding of the failure mechanisms of coatings, for example, cathodic disbonding, corrosion creep, blistering, and cracking, have been developed to a high level over the past decades. However, knowing what actually causes coatings to fail in the field is also important. Several atmospheric field tests of coating with duration 2–9 years have been published, showing that epoxy‐based heavy‐duty protective coating systems with zinc‐rich primers have high resistance against corrosion creep from damages in the coating. Despite this, scribe creep corrosion has become the most important evaluation parameter in standardized testing. In this work, inspection pictures from an offshore oil and gas platform, a ballast water tank system, and two coastal road bridges have been analyzed with respect to the root cause for initiation of corrosion on coated steel. The results show that corrosion mainly initiates at edges and welds. Between 50% and 90% of the corrosion attacks could be attributed to this, depending on the type of structure. The paint failed due to low film thickness, that is, the wet paint retracts from sharp edges in the surface so that the cured film has reduced barrier properties.

Funder

Norges Forskningsråd

Publisher

Wiley

Subject

Materials Chemistry,Metals and Alloys,Surfaces, Coatings and Films,Mechanical Engineering,Mechanics of Materials,Environmental Chemistry,Materials Chemistry,Metals and Alloys,Surfaces, Coatings and Films,Mechanical Engineering,Mechanics of Materials,Environmental Chemistry,Materials Chemistry,Metals and Alloys,Surfaces, Coatings and Films,Mechanical Engineering,Mechanics of Materials,Environmental Chemistry

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3