Influencing factors of particle deposition in the human nasal cavity

Author:

Guo Yingke1,Tang Yuanyuan1ORCID,Su Yingfeng1,Sun Dong1

Affiliation:

1. Department of Otolaryngology Head and Neck Surgery Second Affiliated Hospital of Dalian Medical University Dalian Liaoning Province China

Abstract

AbstractObjectiveTo review the existing literature on the application of computational fluid dynamics methods to study nasal particle deposition and to summarize and analyze the factors affecting nasal particle deposition in order to provide theoretical references for the development of future transnasal drug delivery devices and the prevention of respiratory‐related diseases.Data SourcePubMed and CNKI databases.MethodsA search of all current literature (up to and including February 2023) was conducted. Search terms related to the topic of factors influencing nasal particle deposition were identified, and queries were conducted to identify relevant articles.ResultsBoth the properties of the particles themselves and the environmental conditions external to the particles can affect particle deposition in the nasal cavity, with particle deposition showing a positive correlation with particle size, particle density, and airflow velocity, with increasing subject age leading to a decrease in deposition, and with the relationship between airflow temperature and humidity still requiring more research to further explore.ConclusionsWith the popularity of computational fluid dynamics, more and more scholars have applied computational fluid dynamics technology to explore the influence of different parameters on particle deposition. By summarizing and analyzing the influence law of various factors on deposition, it can provide a theoretical basis for the future development and application of transnasal drug delivery devices and the prevention of respiratory‐related diseases, which makes a significant contribution to the optimization of clinical disease prevention and treatment.Level of EvidenceNA.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3