Comparison of environmental DNA and underwater visual count surveys for detecting juvenile Coho Salmon in small rivers

Author:

Shaffer Jason T.1,Kinziger Andrew P.1ORCID,Bjorkstedt Eric P.2,Buchheister Andre1

Affiliation:

1. Department of Fisheries Biology California State Polytechnic University Humboldt Arcata California USA

2. National Marine Fisheries Service, Southwest Fisheries Science Center Trinidad California USA

Abstract

AbstractObjectiveThis study compares the probability of detecting juvenile Coho Salmon Oncorhynchus kisutch using both environmental DNA (eDNA) techniques and underwater visual count (UVC) surveys in northern California rivers. Here, UVC surveys commonly have detection probabilities (p) surpassing 0.90, providing an ideal setting to examine the performance of newer eDNA methods. We also evaluate the potential for using eDNA concentrations to predict the count of Coho Salmon within pool habitats.MethodsWe conducted paired eDNA and UVC surveys in 96 pools across 25 stream reaches within the Smith River basin, California. Method‐specific p and the effect of environmental covariates were estimated using multiscale occupancy modeling. We used generalized linear models to evaluate the relationship of fish counts to eDNA concentrations and habitat covariates.ResultThe eDNA and UVC methods showed a high degree of agreement in detecting the presence of Coho Salmon within a pool (93% agreement) and survey reach (80% agreement). Detection probabilities for eDNA (peDNA) and for UVC (pUVC) were similar and high at median levels of pool residual depth and contributing basin area (peDNA = 91%, pUVC = 89%). Contributing basin area (a proxy for discharge) had a strong, negative effect that was more pronounced for peDNA than for pUVC (e.g., in the largest basins, peDNA = 34% whereas pUVC = 77%). We did not find eDNA concentrations to be a good predictor of Coho Salmon counts in small pools.ConclusionThis study demonstrates that eDNA methods yielded nearly identical results to UVC surveys in catchments <36 km2 and can provide a highly effective approach for determining the distribution of Coho Salmon. However, additional investigation is required before eDNA could be used to estimate relative abundance in small pools.

Funder

California Department of Transportation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3