Organic transistor‐based integrated circuits for future smart life

Author:

Xie Yifan12,Ding Chenming1,Jin Qingqing1,Zheng Lei1,Xu Yunqi1,Xiao Hongmei3,Cheng Miao1,Zhang Yanqin1,Yang Guanhua1,Li Mengmeng12ORCID,Li Ling12,Liu Ming1

Affiliation:

1. State Key Lab of Fabrication Technologies for Integrated Circuits, Institute of Microelectronics Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences Beijing China

3. Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing China

Abstract

AbstractWith the rapid development of advanced technologies in the Internet of Things era, higher requirements are needed for next‐generation electronic devices. Fortunately, organic thin film transistors (OTFTs) provide an effective solution for electronic skin and flexible wearable devices due to their intrinsic features of mechanical flexibility, lightweight, simple fabrication process, and good biocompatibility. So far considerable efforts have been devoted to this research field. This article reviews recent advances in various promising and state‐of‐the‐art OTFTs as well as related integrated circuits with the main focuses on: (I) material categories of high‐mobility organic semiconductors for both individual transistors and integrated circuits; (II) effective device architectures and processing techniques for large‐area fabrication; (III) important performance metrics of organic integrated circuits and realization of digital and analog devices for future smart life; (IV) applicable analytical models and design flow to accelerate the circuit design. In addition, the emerging challenges of OTFT‐based integrated circuits, such as transistor uniformity and stability are also discussed, and the possible methods to solve these problems at both transistor and circuit levels are summarized.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3