Affiliation:
1. School of Material Science and Engineering Tianjin University Tianjin China
2. School of Chemical Engineering and Technology Tianjin University Tianjin China
Abstract
AbstractMicrobial fuel cells (MFCs) benefit from the introduction of iron in the anode, as its multiple valence states and high electron‐catalytic activity led to improved power densities in MFCs. However, the effect of long‐term Fe3+ release into the electrolyte on the power density of MFCs is often overlooked. Herein, an anode consisting of a three‐dimensional iron foam uniformly coated by reduced graphene oxide (rGO/IF) with a suitable loading density (8 g/m2) and a large specific surface area (0.05 m2/g) for high‐density bacterial loading was prepared. The hybrid cells based on the rGO/IF anode exhibit a maximum power density of 5330 ± 76 mW/m2 contributed by MFCs and galvanic cells. The rGO/IF anode enables continuous Fe3+ release for high electron‐catalytic activity in the electrolyte during the discharging of the galvanic cells. As a result, the hybrid cells showed a power density of 2107 ± 64 mW/m2 after four cycles, facilitated through reversible conversion between Fe3+ and Fe2+ in the electrolyte to accelerate electron transfer efficiency. The results indicate that the rGO/IF anode can be used for designing and fabricating high‐power MFCs by optimizing the rate of release of Fe3+ in the electrolyte.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献