Toward thin and stable anodes for practical lithium metal batteries: A review, strategies, and perspectives

Author:

Lee Jiyoung1,Jeong Seung Hyun1,Nam Jong Seok1,Sagong Mingyu1,Ahn Jaewan1,Lim Haeseong1,Kim Il‐Doo1ORCID

Affiliation:

1. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology Daejeon Republic of Korea

Abstract

AbstractThe lithium metal battery (LMB) is a promising energy storage platform with a distinctively high energy density in theory, outperforming even those of conventional Li‐ion batteries. In practice, however, the actual achievable energy density of LMBs is significantly limited due to the Li metal anode (LMA) being too thick (50–250 μm), and there are difficulties with expanding the highly reactive Li metal into large‐format cells due to safety concerns. Therefore, the recent focus of LMB research is headed toward the development of a thin and stable LMA. However, as the thickness of Li anode decreases (≤20 μm) and the absolute size of the battery cell increases, interfacial reactions on the Li surface become more active, potentially leading to fatal thermal runaway. In this regard, there is still much demand for the development of novel manufacturing technologies to overcome this issue and produce thin and stable Li metal. Considering these things, in this review, we initially examine the fundamentals regarding the deployment of LMAs using a number of essential metrics. Then, we introduce recent strategies employed for designing thin and stable Li anodes including host matrix architecturing, interface stabilization, and other advanced modifications. Finally, we propose future directions for the realization of practical LMBs and their potential applications in various battery systems, encompassing Na, K, and Zn‐based batteries. We anticipate that ultra‐thin and ultra‐stable metal anodes would find widespread utilization in secondary battery applications with high‐power requirements.image

Publisher

Wiley

Subject

Materials Science (miscellaneous),Physical and Theoretical Chemistry,Chemistry (miscellaneous)

Reference189 articles.

1. The Li-Ion Rechargeable Battery: A Perspective

2. Electrical Energy Storage for the Grid: A Battery of Choices

3. Alternative energy technologies

4. Markets and Markets.Lithium‐ion battery market analysis. Markets and Markets. Accessed April 8.2023https://www.marketsandmarkets.com/Market-Reports/lithium-ion-battery-market-49714593.html

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3