Concave microlens arrays with tunable curvature for enhanced photodegradation of organic pollutants in water: A non‐contact approach

Author:

Lu Qiuyun1ORCID,Li Yanan1,Kassim Kehinde1,Xu Ben Bin2ORCID,Gamal El‐Din Mohamed3,Zhang Xuehua1

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta Edmonton Alberta Canada

2. Smart Materials and Surfaces Lab, Mechanical and Construction Engineering, Faculty of Engineering and Environment Northumbria University Newcastle upon Tyne UK

3. Department of Civil and Environmental Engineering University of Alberta Edmonton Alberta Canada

Abstract

AbstractSolar‐driven photodegradation for water treatment faces challenges such as low energy conversion rates, high maintenance costs, and over‐sensitivity to the environment. In this study, we develop reusable concave microlens arrays (MLAs) for more efficient solar photodegradation by optimizing light distribution. Concave MLAs with the base radius of  μm are fabricated by imprinting convex MLAs to polydimethylsiloxane elastomers. Concave MLAs possess a non‐contact reactor configuration, preventing MLAs from detaching or being contaminated. By precisely controlling the solvent exchange, concave MLAs are fabricated with well‐defined curvature and adjustable volume on femtoliter scale. The focusing effects of MLAs are examined, and good agreement is presented between experiments and simulations. The photodegradation efficiency of organic pollutants in water is significantly enhanced by 5.1‐fold, attributed to higher intensity at focal points of concave MLAs. Furthermore, enhanced photodegradation by concave MLAs is demonstrated under low light irradiation, applicable to real river water and highly turbid water.image

Funder

Canada First Research Excellence Fund

Canada Foundation for Innovation

Canada Research Chairs

Natural Sciences and Engineering Research Council of Canada

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Materials Science (miscellaneous),Physical and Theoretical Chemistry,Chemistry (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3